High Energy Neutrino Astronomy
with the ANTARES Deep-Sea Telescope

- research goals: deep kosmos
- the detector setup: deep sea
- status and performance
- some results: μ, ν
- expectations
- summary

Herbert Löhner, KVI, University Groningen, The Netherlands on behalf of the ANTARES collaboration http://antares.in2p3.fr
the sky in the light of γ rays

HESS telescope in Namibia

VHE γ-ray Sky Map
($E_\gamma > 100 \text{ GeV}$)

VHE γ-ray sources
- Blazar (HBL)
- Blazar (LBL)
- Flat Spectrum Radio Quasar
- Radio Galaxy
- Starburst galaxy
- Pulsar Wind Nebula
- Supernova Remnant
- Binary System
- Wolf-Rayet Star
- Open Cluster
- Unidentified

2010-10-11 - Up-to-date plot available at http://www.mpp.mpg.de/~rwagner/sources/
neutrino astronomy

intriguing science questions:
• origin of cosmic rays \(\rightarrow 10^{20} \text{ eV} \) ?
• astrophysical acceleration mechanism?
• origin of relativistic jets?
• dark matter?

cosmic sources of neutrinos
• Active Galactic Nuclei: super-massive black hole in center of galaxies
• micro quasars: X-ray binaries (in our galaxy)
• supernova remnants and shock acceleration

TeV \(\gamma\) rays (\(p+X \rightarrow \pi^0 \rightarrow \gamma\gamma \)) in centre of our galaxy from supernova remnant RX J1713.7-39.
Expect:
\(p+X \rightarrow \pi^\pm \rightarrow \nu \bar{\nu} \)

neutrinos reach Earth undisturbed: need sensitivity and angular resolution
Active Galactic Nuclei (AGN)

Hubble: galaxy M87 jet

Supermassive Black Hole ($>10^6 \, M_\odot$) → Accretion Disk → Frictional heating → Plasma → relativistic jet
sky view (galactic coordinates)

AMANDA / IceCube (South Pole)

ANTARES (43° N)

acceptance density

acceptance range

Mkn 421
Mkn 501
SS433
CRAB

Mkn 501
RX J1713.7-39
SS433
GX339-4
VELA
Galactic Centre

1.5 π sr common view per day
indirect WIMP detection

Relic WIMPs (neutralino χ ?) from Big Bang scatter in e.g. the Sun and become gravitationally trapped

\rightarrow increased WIMP density

\rightarrow increased WIMP annihilation rate

\rightarrow high-energy neutrino flux (limit) from the Sun
detection principle

Neutrinos can interact through charged current interaction in the vicinity of a neutrino telescope.

up-going neutrinos passing through the Earth are free from atmospheric muon background.

\(\nu_{\mu} \) track reconstructed from \(\mu \) Cherenkov cone passing 3D grid of PMTs.

10⁷ atm. \(\mu \) per year

10⁴ atm. \(\nu \)

1 - 100 cosm. \(\nu \)
the telescope setup

- 3 10” PMT/storey
- 25 storeys/line
- 12 detection lines:
 - ~900 PMT + acoustic detection

Dimensions:
- Buoy: 14.5 m
- Junction box: 100 m
- Electro-optical cable: 45 km
- Readout cables: ~60-75 m
The Antares Site

Villa Pacha

- 45 km submarine cable
- 2475 m

Astropart. Phys 13 (2000) (Background light)
Astropart. Phys 23 (2005) (Light transmission)
status of the experiment

Antares installation completed May 2008

Footprint of the 12-line detector in atmospheric muons

x, y coordinates of track fits at the time of the first triggered hit

~ 0.1 km² sensitive surface
Median rate of measured single photon counts: typ. 60 – 80 kHz caused by bioluminescence (~ 30 kHz) and 40K decay (~ 40 kHz) with occasional bursts of extreme high rates (~ MHz) caused by macro-organisms (depends on sea current):

multidisciplinary research, oceanographic studies
bursts from macro-organisms:
~ few MHz,
strongly affected by sea currents:

mechanically stimulated bioluminescence

interesting issues for ESONET – EMSO:
European Multidisciplinary Sea Observatory
to be published in Deep Sea Research I.
Local coincidences from ^{40}K decay

- Efficiency of Optical Modules (\sim8%)
- Accuracy of time calibration (\sim0.5 ns)

Peak integral

Gaussian distributed local coincidence time

- Efficiency of Optical Modules (~8%)
- Accuracy of time calibration (~0.5 ns)
track reconstruction

Cherenkov effect

Sea water $n \sim 1.35$

Position resolution: ~ 10 cm

Time resolution: ~ 2 ns

Optical Module OM_i

arrival time at OM_i

($v_g = \text{group velocity of light in water}$)

$$t_i = t_0 + \frac{1}{c} \left(\ell - \frac{k}{\tan \theta_C} \right) + \frac{1}{v_g} \left(\frac{k}{\sin \theta_C} \right)$$
expected performance: 12 lines

angular resolution = difference between reconstructed and MC generated angles vs. neutrino energy

\[
\Theta_{\nu-\mu} \leq \frac{0.7^\circ}{\sqrt{E_\nu \, \text{(TeV)}}^{0.6}}
\]

angular resolution

\(< 0.2 \quad \text{above} \approx 10^5 \text{ GeV}\)

limited tracking accuracy due to time resolution:

- Light scattering $\sigma \sim 1.0$ ns
- TTS in PMT $\sigma \sim 1.3$ ns
- time calibration $\sigma < 0.5$ ns
- OM position $\sigma < 10$ cm
 ($\leftrightarrow \sigma < 0.5$ ns)
up-going muon: neutrino candidate

reconstruction of muon trajectory from **time, charge and position** of PMT hits assuming relativistic muons emitting **Cherenkov light: 34.8° up-going muon**
Muon Flux

$\Phi(h)$ depends on depth (h): dependence directly measured from adjacent storey coincidences:

$$\Phi(h) = \Phi_0 \cdot \exp\left(\frac{h-h_0}{\lambda}\right)$$

(slope λ not affected by normalization uncertainty:

$$\lambda = 540 \pm 25 \text{ m}$$

in agreement with Monte Carlo:

$\lambda^{MUPAGE} = 560 \text{ m}$

$\lambda^{CORSIKA} = 570 \text{ m}$
Muon Depth-Intensity relation

\[I(\vartheta, h_o) = \frac{N(\vartheta, h_o) \cdot \mu(\vartheta, h_o)}{A_{\text{eff}}(\vartheta) \cdot T \cdot \Delta \Omega(\vartheta)} \]

Parameterization from E. V. Bugaev et al., PRD 58 (1998) 05401

good agreement with Monte Carlo and various experiments
neutrino candidates from track zenith distribution

5-line data (May-Dec. 2007) +
9-12 line data (2008)

341 days detector live time,
reconstruction BBfit v3r2,
single- and multi-line fit:

1062 neutrino candidates:

3.1 \(\nu \) candidates/day

good agreement with Monte Carlo:

atmospheric neutrinos: 916 (30\% syst. error)
atmospheric muons: 40 (50\% syst. error)
Search for point-like neutrino sources

with the 2007 (5-line) data: effective live time 140 days
stringent selections: low background
high reconstruction quality (ang. resolution < 0.5°)

searches
on data with scrambled coordinates of 94 events (equatorial coordinates):

no correlation with 25 potential \(\nu \) sources;
no excess (± 1\(\sigma \)) in all-sky search;
sensitivity competitive with multi-year exposures of previous experiments
Improved sky map data

Scrambled data from 2007+2008 analysis: galactic coordinates

750 up-going neutrinos

actually, 2000 neutrino events available, analyzed: correlations published soon
Ice Cube sky map

1877 events, equatorial coordinates

“No significant deviation from the background hypothesis was found in the sky map.”
Antares event classes

Event Classes with a Track

\[\nu_\mu, \bar{\nu}_\mu \quad CC \]

Event Classes without a Track

\[\nu_\tau, \bar{\nu}_\tau \quad NC \]

\[\nu_e, \bar{\nu}_e \quad CC \]

extend Antares sensitivity to all 3 neutrino flavours
ν-induced shower in Antares
background suppression

Expected number of events/year after each criterion (logarithmic scale)

A: (down-going) atmospheric muons
B: False up-going events (2.5%)
C: Minimum deposited charge
 (0.5% false up-going)

A: All showers
B: All up-going events (70%)
C: Minimum deposited charge
 (28% left after the criteria)
apply selective cuts on shower observables

Using combined cut to maximize Purity & Efficiency

\[\chi^2 \text{ cut} \]

\[\text{residual cut} \]

combined cuts
high shower selectivity

Atmospheric muon suppression

Upgoing shower selection

Expected reconstruction of ~ 200 showers/year with good energy determination

(logarithmic scale)
Multi-Messenger astronomy

Strategy: higher **discovery potential** by observing different probes
higher **significance** by coincidence detection
higher **efficiency** by relaxed cuts

MoUs for joint research

Ligo/Virgo
Gravitational waves: trigger + dedicated analysis chain

TAROT
optical follow up: 10 s repositioning

GCN
GRB Coord. Network: γ satellites

Prague, February 16, 2011

H. Löhner, High Energy Neutrino Astronomy
Ice Cube at the Southpole

IceCube Lab

1 km3 completed in 2010

IceCube Array
86 strings, 60 sensors each
5,160 optical sensors

DeepCore
6 strings optimized for low energies

Eiffel Tower
324 meters

Prague, February 16, 2011

H. Löhner, High Energy Neutrino Astronomy
future plans: KM3NeT concept

array of optical modules (OM) sensing Cherenkov light

instrumented volume several km3

sensitive to all ν flavours

$E_\nu > 0.1$ GeV

angular resolution min 0.1° for $E_\nu > 10$ TeV

acceptance: up-going tracks, up to 10° above horizon
candidate deployment sites

criteria:
bioluminescence, 40K background, salinity, currents, water transparency: transmission length (recent data) \(\leq (46+3) \text{ m} \) at depth 2500 - 3000 m at \(\lambda = 450 - 470 \text{ nm} \)
optical module / string design

new multi-PMT Optical Module concept with 31 3” PMT

String Detection Unit

high 2-photon purity (sea background) and directional sensitivity
KM3NeT Consortium

42 institutes from:

Cyprus, France, Germany, Greece, Ireland, Italy, Netherlands, Romania, Spain, UK

pilot projects:

- **ANTARES**
- **NESTOR**
- **NEMO**
- +...

funded by EU FP6 for Design Study, by EU FP7 for Preparatory Phase, on the ASPERA roadmap

Conceptual Design Report
April 2008

Technical Design Report
July 2010

start Construction Phase
2012
The ANTARES Collaboration

- NIKHEF, Amsterdam
- KVI Groningen
- NIOZ Texel
- ECAP, Erlangen
- Bamberg
- CPPM, Marseille
- DSM/IRFU/CEA, Saclay
- APC Paris
- IPHC (IReS), Strasbourg
- Univ. de H.-A., Mulhouse
- Clermont-Ferrand
- IFREMER, Toulon/Brest
- C.O.M. Marseille
- LAM, Marseille
- GeoAzur Villefranche
- University/INFN of Bari
- University/INFN of Bologna
- University/INFN of Catania
- LNS – Catania
- University/INFN of Pisa
- University/INFN of Rome
- University/INFN of Genova

7 countries
30 institutes
140 scientists
Summary

- **ANTARES completed since May 2008**
- muon intensity-depth distributions determined
- angular resolution <0.2 degree for energies >100 TeV
- neutrino candidate events selected (~3 / day)
- point source distribution: no signal yet, work in progress
- multi-messenger observations on alert
- KM3NeT development for several km3 observatory
track quality selection

reconstruction algorithm:
• linear prefit photon hit coordinates \(x, y, z, t\)
• minimization with hit-charge weights
• Maximum likelihood (L) fit using MC pdf of time residuals

quality cut variable:
\[
\Lambda = -\frac{\ln L}{N_{dof}} + 0.1 \cdot \left(N_{comp} - 1 \right)
\]

remaining 10 atmospheric \(\nu\) / day
1 atmospheric \(\mu\) / day
Event Display

Hits are plotted for each line: height (z) versus time (t)

⇒ Characteristic pattern depending on zenith angle and distance of closest approach

Several reconstruction strategies available and explored:
1D, 3D, χ^2 minimization, Max. Likelihood optimization
Atmospheric muons

- **black points**: data 5-line detector (2007)
- **blue line**: MUPAGE Monte Carlo [Com. Phys. Comm. 179(2009)915]
- **red line**: CORSIKA + QGSJET + NSU param for

For details on:

Main sources of systematic uncertainties:
- environmental parameters (absorption and scattering length)
- detector parameters (OM efficiency)
- **Shadowed band**: systematic uncertainty w.r.t. the black line (40%).

- physics:
 - hadronic interaction models
 - models of cosmic ray composition

- within systematic uncertainties data are reproduced by MC
- good understanding of the detector and its environment
- work in progress to reduce uncertainties
Hillas criterion

Magnetic field confines charged particles in acceleration region:

\[E_{\text{max}} \propto \beta c Z e B r_L \]

\[\log (B) + \log (r_L) \propto E_{\text{max}} \]

candidate sites for 100 EeV, 1 ZeV protons

- Neutron star
- GRB
- Protons (100 EeV)
- Protons (1 ZeV)
- White dwarf
- Fe (100 EeV)
- nuclei, jets, hot-spots, lobes
- Active galaxies
- Colliding galaxies
- SNR
- Galactic disk, halo
- Clusters

log (magn. field B / Gauss)

log (size \(r_L \)/km)

1 au, 1 pc, 1 kpc, 1 Mpc
instrumentation line for environmental monitoring

Goals:
- monitor of environmental sea parameters
- apparatus calibration
- acoustic detection prototyping

- WetLabs CSTAR light transmissometer
- CT = Seabird Conductivity-Temperature probe
- SV = Sound Velocimeter
- ADCP = Acoustic Doppler Current Profiler
- GURALP seismometer
- 2 OMs
- 1 Laser + 2 Led Beacon
- Acoustic Positioning RxTx & Rx
- O₂-probe
- 2 cameras

Three floors equipped for acoustic detection R&D (part of the AMADEUS prototype system)
Storey coincidences

derive depth dependence of muon flux from coincidence-time distributions of (next-to) adjacent storeys, each with a local coincidence (± 20 ns):

low threshold of 4 GeV (minimum track length between adjacent storeys)

distribution of measured time differences agrees with MUPAGE MonteCarlo

mostly down-going muons: delay ~ + 20 ns)